Graphene Quantum Dots-Coated Bismuth Nanoparticles for X-ray CT Imaging-Guided Photothermal therapy of Cancer Cells
Authors
Abstract:
Introduction: Theranostic nanoparticles, which integrate both diagnostic and therapeutic capabilities into one nanoagent, has great promise to ablate more effective tumoral tissue by optimizing and real-time monitoring treatment interventions, as well as monitoring therapeutic response to corresponding effect. Multifunctional theranostic nanoagent based on graphene quantum dots (GQDs)-coated Bi nanohybrids (GQDs-Bi NPs) was developed and investigate their multimodal imaging and PTT performance. Materials and Methods: The GQDs-Bi NPs were fabricated by utilizing simple two-step synthesis: GQDs as shell and Bi NPs as core in presence of GQDs. By hemolysis and MTT test, blood compatibility and cellular toxicity of GQDs-Bi NPs were examined. For phantom CT imaging, the GQDs-Bi NPs aqueous solutions at various concentrations of Bi element scanned by a clinical CT scanner (GE HiSpeed) (160 mA, 80,120 and140 kV). The corresponding CT values (HU) were measured by imageJ software. To evaluate the photothermal effect, the GQDs-Bi NPs dispersions at different concentrations of active Bi metal were irradiated with an 808 nm-NIR-laser (1.7 W·cm-2) for 10 min and a thermocouple probe was used to record the temperature of suspensions. Results: The GQDs-Bi NPs showed satisfactory cytotoxicity and hemolysis behavior. The heavy metal Bi component (Z=83) in the GQDs-Bi NPs produced much higher Hounsfield units (173 HU) than the contrast agents based on small molecules iodine (134 HU), corresponding, 1 mg Bi/ml provided an equivalent X-ray attenuation as dotarem contain of 1.5 mg/mL Iodine. A strong and steady absorbance was found for GQDs-Bi NPs in the whole NIR range, as well as high photo-to-thermal conversion capability and photostability, encouraging a high antitumor PTT efficiency. The GQDs-Bi NPs could successfully kill in vitro MCF-7 and HeLa cancer cells under NIR irradiation with killing effect dependent on dose compared to those received laser only (3.0%). Conclusion: GQDs-Bi nanotheranostic may become an effective tool for CT imaging-guided therapy for personalized cancer treatment.
similar resources
Composite silica coated gold nanosphere and quantum dots nanoparticles for X-ray CT and fluorescence bimodal imaging.
In this study, silica coated Au nanospheres (Au@SiO2) were prepared by a reverse microemulsion method; subsequently, a layer of fluorescent quantum dots (QDs) were adsorbed onto it and then it was coated with silica again. After modifying with PVP, the composite silica coated gold nanosphere and quantum dots nanoparticle (Au@SiO2-QDs/SiO2-PVP) was obtained. This composite structure contained Au...
full textEvaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging
Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...
full textMultifunctional GQDs-Coated Fe/Bi Nanohybrids for CT/MR Dual Imaging and in vitro Photothermal Therapy
Introduction: The multipurpose nanocomposites have gained growing biomedical attention as promising nanotheranostics to improve The effectiveness of cancer treatment, which concurrently combine advantages of the therapeutic and diagnostic techniques into one nanosystem. The “all-in on” probes not only help to ablate cancerous tumors, but also allow to optimize and monitoring of...
full textFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
full textdevelopment of different optical methods for determination of glucose using cadmium telluride quantum dots and silver nanoparticles
a simple, rapid and low-cost scanner spectroscopy method for the glucose determination by utilizing glucose oxidase and cdte/tga quantum dots as chromoionophore has been described. the detection was based on the combination of the glucose enzymatic reaction and the quenching effect of h2o2 on the cdte quantum dots (qds) photoluminescence.in this study glucose was determined by utilizing glucose...
Protein-based photothermal theranostics for imaging-guided cancer therapy.
The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good ...
full textMy Resources
Journal title
volume 15 issue Special Issue-12th. Iranian Congress of Medical Physics
pages 250- 250
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023